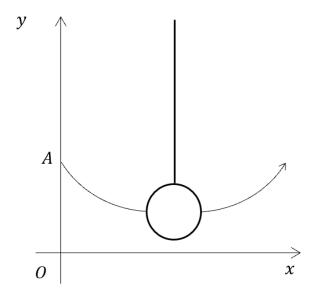
# 4.3 Differentiation of Parametric Equations Question Paper

| Course     | CIE A Level Maths                           |
|------------|---------------------------------------------|
| Section    | 4. Differentiation                          |
| Topic      | 4.3 Differentiation of Parametric Equations |
| Difficulty | Very Hard                                   |

Time allowed: 50

Score: /38


Percentage: /100

#### Question la

A crane swings a wrecking ball along a two-dimensional path defined by the parametric equations

$$x = 10t$$
  $y = 4.9t^2 - 4.9t + 2$   $0 \le t \le 1$ 

as shown in the diagram below.



x and y are, respectively, the horizontal and vertical displacements in metres from the origin, O, and t is the time in seconds. Point A indicates the initial position of the wrecking ball.

- (a) (i) Write down the height of the wrecking ball when it is at point A.
  - (ii) Find the shortest distance between the wrecking ball and the ground during its motion.

[4 marks]

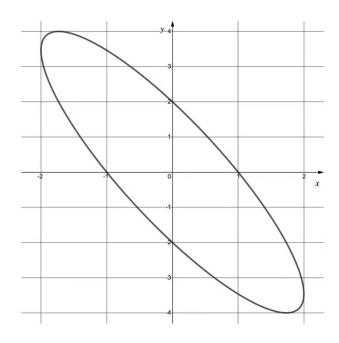
| www.mikedemy | /.com |
|--------------|-------|
|--------------|-------|

#### Question 1b

(b) The destruction of a building requires the wrecking ball to strike it at a height of 1.4 m whilst on the upward part of its path.

Find the horizontal distance from point A at which the ball hits the building.

[4 marks]


## Question 2a

The graph of the ellipse  ${\it E}$  shown below is defined by the parametric equations

$$x = 2\cos\left(\theta + \frac{\pi}{3}\right)$$

$$y = 4 \sin \theta$$

$$-\pi \le \theta \le \pi$$



(a) Find an expression for  $\frac{dy}{dx}$  in terms of  $\theta$ .

[3 marks]

#### Question 2b

(b) Find the equation of the tangent to E, at the point where  $\theta = -\frac{\pi}{6}$ , giving your answer in the form y = a - bx, where a and b are real numbers that should be given in exact form.

[4 marks]

#### Question 3

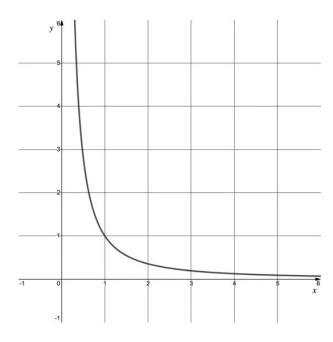
The curve  $\mathcal C$  has parametric equations

$$x = 3t y = t + \frac{1}{t} t > 0$$

Find the equation of the normal to C at the point where C intersects the line y = x.

[9 marks]

www.mikedemy.com


## Question 4

The graph of the curve defined by the parametric equations

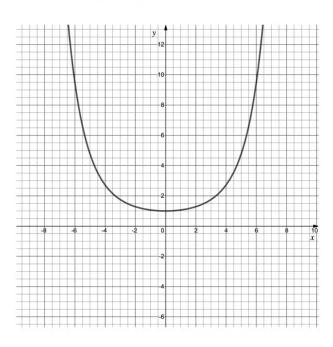
$$x = e^{2t}$$

$$y = e^{-3t}$$

is shown below.



- (i) Verify that the graph passes through the point (1, 1).
- (ii) Prove that the line with equation y = x is **not** the normal to the curve at the point (1, 1).


[6 marks]

#### Question 5a

The diagram below shows a sketch of the curve defined by the parametric equations

$$x = 4t$$

$$y = e^{t^2}$$



The tangents to the curve that pass through the origin meet the curve at points  $\boldsymbol{A}$  and  $\boldsymbol{B}$ 

(a) Show that the values of 
$$t$$
 at points  $A$  and  $B$  are  $t = -\frac{\sqrt{2}}{2}$  and  $t = \frac{\sqrt{2}}{2}$ .

[5 marks]

| www.mikedemy.co | m |
|-----------------|---|
|-----------------|---|

# Question 5b

(b) Hence, or otherwise, show that the area of the triangle OAB is  $2\sqrt{2}~e^{\frac{1}{2}}$  square units.

[3 marks]